学术报告
所在位置 9001cc金沙 > 学术科研 > 学术报告 > 正文
学术报告:What is an affine Kac-Moody Lie algebra?
编辑:发布时间:2017年05月10日

报告人Arturo Pianzola教授

        加拿大Alberta大学数学系

报告题目:What is an affine Kac-Moody Lie algebra? (D’apres Demazure-Grothendieck; circa 1963)

报告时间:2017年05月16日16:30

报告地点:海韵教学楼305

报告摘要This talk is intended for a general audience. No knowledge of infinite dimensional Lie theory is needed, and the affine algebras are an ”excuse” to discuss, mostly by concrete examples, a bridge between infinite dimensional Lie theory and SGA3. The title of this talk is (intentionally) misleading: Kac-Moody Lie algebras did not exist in 1963. That said, over the last decade substantial results on infinite dimensional Lie theory have been proven using the theory of reductive group schemes developed by Demazure and Grothendieck in SGA3. One can therefore ask, a posteriori, what are the affine algebras in the language of SGA3. It is an intriguing question with an elegant answer that naturally leads to a (new) family of infinite dimensional Lie algebras related to Grothendieck’s dessins d’enfants.

报告人简介:A. Pianzola教授是李理论研究领域的世界著名学者,是高维仿射李代数(Extended Affine Lie Algebra)研究方向的奠基人之一。现为Alberta大学数学与统计系主任,曾任Bulletin of the Canadian Mathematical Society杂志主编。研究方向包括Kac-Moody代数、代数群、代数几何在李理论中的应用等

联系人:谭绍滨教授、王清教授

欢迎广大师生参加!