学术报告
所在位置 9001cc金沙 > 学术科研 > 学术报告 > 正文
学术报告:Conformal Rigidity of a New Ricci Curvature in Finsler Geometry
编辑:发布时间:2017年05月16日

报告人:陈滨副教授

 同济大学

报告题目:Conformal Rigidity of a New Ricci Curvature in Finsler Geometry

报告时间:2017年05月21日10:00

报告地点:海韵数理楼661

报告摘要On a Riemannian manifold, a Liouville transformation is a conformal

change which preserves the Ricci tensor. In this talk, we will consider conformal transformations in Finsler geometry. A modified Ricci curvature will be introduced and its conformal rigidity is obtained. Since this modified Ricci curvature does not make sense for surfaces, in fact its principle part is a non Riemannian quantity,  we will talk about the conformal properties of some non Riemannian curvatures on Finsler surfaces.

报告人简介:陈滨,2008年获浙江大学博士学位,2008-2010年在浙江大学数学中心博士后。现为同济大学副教授,从事微分几何研究。

联系人:钟春平教授

欢迎广大师生参加!