学术报告
所在位置 9001cc金沙 > 学术科研 > 学术报告 > 正文
学术报告:Modular representations and branching rules for affine and cyclotomic Yokonuma-Hecke algebras
编辑:发布时间:2017年09月18日

报告人:万金奎教授

北京理工大学

报告题目:Modular representations and branching rules for affine and cyclotomic Yokonuma-Hecke algebras

报告时间: 2017年9月22日下午16:00

报告地点:海韵实验楼108

内容摘要:We establish an equivalence between a module category of the affine (resp. cyclotomic) Yokonuma-Hecke algebra, associated with the group Z/rZ, and its suitable counterpart for a direct sum of tensor products of extended affine Hecke algebras of type A (resp. Ariki-Koike algebras). We then give some applications of this result. Firstly, the simple modules of affine and cyclotomic Yokonuma-Hecke algebras are classified over an algebraically closed field of characteristic p when p does not divide r. Secondly, the modular branching rules for them are obtained; moreover, the resulting modular branching graphs for cyclotomic Yokonuma-Hecke algebras are identified with crystal graphs of irreducible integrable modules of affine Lie algebras of type A. This is a joint work with Weeding Cui.

报告人简介:万金奎,北京理工大学教授。主要从事李代数、量子群、Hecke代数的表示理论及相关代数组合理论的研究,在Advances in Mathematics,Proceedings of the London Mathematical Society、Transactions of the American Mathematical Society等期刊发表十余篇论文,共承担两项国家自然科学基金项目。

学院联系人:谭绍滨教授、王清教授

欢迎广大师生参加!