学术报告
所在位置 9001cc金沙 > 学术科研 > 学术报告 > 正文
学术报告:On Wakimoto and Whittaker modules for affine vertex operator algebras
编辑:发布时间:2017年10月27日

报告人:Drazen Adamovic 教授

University of Zagreb

报告题目:On Wakimoto and Whittaker modules for affine vertex operator algebras

报告时间:2017年10月30日下午3:00

报告地点:海韵行政楼B313

摘要:We study the problem of a classification of irreducible modules for affine Lie algebras in certain categories. We shall first present the definition of the Wakimoto and the Whittaker modules for affine Lie algebras and show that they are naturally modules for universal affine vertex operator algebras. We present a classification result for untwisted Wakimoto modules for $A_1 ^{(1)} $ at the critical level. Next, we shall discuss the classification of irreducible Wakimoto modules in principal graduation for the affine Lie algebras (obtained in a joint work with N. Jing and K. Misra) and give some combinatorial applications. The classification of Whittaker modules for $A_1 ^{(1)} $ will be also presented (joint work with K. Zhao and R. Lu). As an application, we will show that the concept of Whittaker modules can be used to construct self-dual modules for the Heisenberg-Virasoro vertex algebras.

学院联系人:谭绍滨教授、王清教授

欢迎广大师生参加!