学术报告
所在位置 9001cc金沙 > 学术科研 > 学术报告 > 正文
学术报告:On the Morse index of minimal tori in S^4
编辑:发布时间:2018年03月22日

报告人:王鹏教授

        福建师范大学

题目:On the Morse index of minimal tori in S^4

时间:20180323日下午16:00

地点:海韵实验楼105 

报告摘要:Urbano's Theorem plays an important geometric role in the proof of Willmore conjecture, which states that a non-totally-geodesic closed minimal surface x in S^3 has index at least 5 and it is congruent to the Clifford torus if the index is 5. In this talk we will provide a generalization of Urbano's Theorem to minimal tori in S^4 by showing that a minimal torus in S^4 has index at least 6 and it is congruent to the Clifford torus if the index is 6. This is a joint work with Prof. Rob Kusner(UMass Amherst).

报告人简介:王鹏,福建师范大学数学与信息学院教授,2008年博士毕业于北京大学9001cc金沙,研究领域为微分几何,主要研究Willmore曲面和极小曲面的整体性质,在Journal of Differential GeometryAdvances in Mathematics等杂志上发表多篇文章。

 

欢迎广大师生参加!