报告人:江飞教授
福州大学 数学与计算机科学学院
题目:On Magnetic Inhibition Theory in Non-resistive Magnetohydrodynamic Fluids
时间:2018年5月12日上午09:30
地点:海韵数理楼661
摘要:We investigate why the non-slip boundary condition for the velocity, imposed in the direction of impressed magnetic fields, can contribute to the magnetic inhibition effect based on the magnetic Rayleigh--Taylor (abbr. NMRT) problem in nonhomogeneous incompressible non-resistive magnetohydrodynamic (abbr. MHD) fluids. Exploiting an infinitesimal method in Lagrangian coordinates, the idea of (equivalent) magnetic tension, and the differential version of magnetic flux conservation, we give an explanation of physical mechanism for the magnetic inhibition phenomenon in a non-resistive MHD fluid. Moreover, we find that the magnetic energy in the non-resistive MHD fluid depends on the displacement of fluid particles, and thus can be regarded as elastic potential energy. Motivated by this observation, we further use the well-known minimum potential energy principle to explain the physical meaning of the stability/instability criteria in the NMRT problem. As a result of the analysis, we further extend the results on the NMRT problem to the stratified MHD fluid case. We point out that our magnetic inhibition theory can be used to explain the inhibition phenomenon of other flow instabilities, such as thermal instability, magnetic buoyancy instability, and so on, by impressed magnetic fields in non-resistive MHD fluids..
报告人简介:江飞,博士、福州大学数学与计算机科学学院教授、博导。2010年博士毕业于9001cc金沙,2010年至2012年北京应用物理与计算数学研究所博士后。主要研究流体动力学中偏微分方程组的适定性问题及解的性态。获福建省自然科学杰出青年基金资助、入选福建省高校杰出青年科研人才培育计划,入选福州大学“旗山学者”奖励支持计划,主持国家自然科学基金面上项目等。已在《Adv. Math.》, 《Arch. Rational Mech. Anal.》,《Commun. Part. Diff. Eq.》,《J. Funct. Anal.》,《J. Math. Pures Appl.》,《J. Math. Fluid Mech.》《SIAM J. App. Math.》等发表论文30余篇。
联系人:王焰金教授
欢迎广大师生参加!