学术报告
所在位置 9001cc金沙 > 学术科研 > 学术报告 > 正文
学术报告:Sparse Grid Discontinuous Galerkin Methods for Vlasov-Maxwell Systems
编辑:发布时间:2018年06月13日

报告人:陶詹晶博士

       Michigan State University(美国密歇根州立大学)

题目:Sparse Grid Discontinuous Galerkin Methods for Vlasov-Maxwell Systems

时间:2018621日下午15:00

地点:海韵行政楼B313

摘要:We develop sparse grid discontinuous Galerkin (DG) schemes for the Vlasov-Maxwell (VM) equations. The VM system is a fundamental kinetic model in plasma physics, and its numerical computations are quite demanding, due to its intrinsic high-dimensionality and the need to retain many properties of the physical solutions.   To break the curse of dimensionality, we consider the sparse grid DG methods. Such methods are based on multiwavelets  on tensorized nested grids and can significantly reduce the numbers of degrees of freedom.  We formulate two versions of the schemes: sparse grid DG and adaptive sparse grid DG methods for the VM system. Their key properties and implementation details are discussed. Accuracy and robustness are demonstrated by  numerical tests,  with emphasis on comparison of the performance of the two methods.

报告人简介:陶詹晶,2016年博士毕业于厦门大学,20168月至今在美国密歇根州立大学(Michigan State University)从事博士后研究,研究领域为计算流体力学,主要研究SparseGrid方法在高维问题中的应用。

联系人:邱建贤教授

欢迎广大师生参加!