学术报告
所在位置 9001cc金沙 > 学术科研 > 学术报告 > 正文
【学术报告】(线上)Atomic decomposition for holomorphic Hardy spaces on products of Siegel upper half spaces and bi-parameter Hardy spaces
编辑:刘梦洁发布时间:2023年06月13日

报告人:吴清艳临沂大学

间:2023615日上午8:30

点:腾讯会议560-348-509无密码

内容摘要:

Products of Siegel upper half spaces are Siegel domains, whose Silov boundaries have the structure of products $\mathscr H_1\times\mathscr H_2$ of Heisenberg groups. By the reproducing formula of bi-parameter heat kernel associated to sub-Laplacians, we show that a function in holomorphic Hardy space $H^1$ on such a domain has boundary value belonging to bi-parameter Hardy space $H^1(\mathscr H_1\times \mathscr H_2)$. With the help of atomic decomposition of $H^1(\mathscr H_1\times \mathscr H_2)$ and bi-parameter harmonic analysis, we show that the Cauchy-Szeg\H o projection is a bounded operator from $H^1 (\mathscr H_1\times \mathscr H_2)$ to holomorphic Hardy space $H^1$, and any holomorphic $H^1$ function can be decomposed as a sum of holomorphic atoms. Bi-parameter atoms on $\mathscr H_1\times\mathscr H_2$ are more complicated than $1$-parameter ones, and so are holomorphic atoms.

人简介

吴清艳,临沂大学数学与统计学院教授,博士生导师。主要从事多复变函数论和调和分析的研究,特别是这两个方向的相互交叉与应用J. Funct. Anal., Indiana Univ. Math. J., Proc. Amer. Math. Soc.等数学杂志上发表学术论文30余篇先后主持国家自然科学基金3项、山东省自然科学基金3项。


联系人:杨东勇